7.29-7.20 (m, 2 H, ArH), 7.10-7.06 (m, 2 H, ArH, H-10), 4.79 (s, $2 \mathrm{H}, \mathrm{H}-7$ ), 4.57 (s, $2 \mathrm{H}, \mathrm{H}-2$ or $\mathrm{H}-17$ ), 4.49 (s, $2 \mathrm{H}, \mathrm{H}-2$ or $\mathrm{H}-17$ ), 4.46 (s, $2 \mathrm{H}, \mathrm{H}-12$ ), $3.83-3.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.71-3.68(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ ), $3.63-3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.90(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{NMe}_{2}$ ); MS (FD, 0 ma$) m / z 425\left(\mathrm{M}^{+}\right)$.

Methyl 9-[(N,N-Dimethylamino)sulfonyl]-3,6,13,16-tet-raoxa-9,23-diazatricyclo[16.3.1.1 $\left.{ }^{8,11}\right]$ tricosa-1(22),8(23), $10,18,20$-pentaene-22-carboxylate (24). To a stirred suspension of 114 mg ( 4.97 mmol ) of sodium hydride in 120 mL of THF was added dropwise, at ambient temperature, a solution of 730 mg ( 2.28 mmol ) methyl 2,6-bis(bromomethyl)benzoate and 730 mg ( 2.28 mmol ) of 3 in 120 mL of THF over 3 h . The reaction was stirred for 12 h at room temperature, quenched with several drops water, and concentrated under reduced pressure to yield an oily, brown solid. The oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and purified by flash chromatography ( $4 \%$ methanol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to yield $770 \mathrm{mg}(61 \%)$ of 24 as a light yellow solid: IR $\left(\mathrm{CCl}_{4}\right) 2920$, $1728,1551,1003, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.13$ ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-10$ ), 4.64 (s, $2 \mathrm{H}, \mathrm{H}-7$ ), $4.55-4.48$ (bs, $4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-17$ ), $4.38(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-12), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.59(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ ), $2.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SO}_{2} \mathrm{NMe}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta$ 168.61, 144.79, $137.80,136.82,136.73,132.01,129.10,128.58,128.54,118.33,70.94$, $70.92,69.14,69.07,68.93,68.70,65.76,64.52,51.76,37.97$; mass spectrum (FD, ma), $m / z 483\left(\mathrm{M}^{+}, 100\right)$.

Methyl 3,6,13,16-Tetraoxa-9,23-diazatricyclo[16.3.1.1 ${ }^{8,11}$ ]-tricosa-1(22), $8,10,18,20$-pentaene-22-carboxylate (4). A solution of 902 mg ( 1.87 mmol ) of 24 in 50 mL of $10 \%$ sulfuric acid was heated to $60^{\circ} \mathrm{C}$ for 12 h . The pH of the solution was carefully adjusted to $\mathrm{pH}=5$, at $0^{\circ} \mathrm{C}$, with saturated aqueous sodium bicarbonate. The solution was extracted four times with 100 mL of $10 \%$ isopropanol-chloroform. The organic layers were dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure to yield a yellow oil. Flash chromatography (4\% methanol$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) yielded a light yellow solid, which was recrystallized from petroleum ether-ethyl acetate ( $3: 1$ ) to afford $506 \mathrm{mg}(72 \%$ ) of 4 as small off-white needles: mp $79-80^{\circ} \mathrm{C}$; IR (KBr) $3700-3000$, $1725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.39-7.25$ (m, $3 \mathrm{H}, \mathrm{ArH}$ ), 6.83 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-10$ ),
4.84-4.68 (m, 4 H, ArCH 2 ), 4.49-4.45 (m, 2 H, $\mathrm{ImCH}_{2}$ ), 4.37-4.31 $(\mathrm{m}, 2 \mathrm{H}, \operatorname{ImCH}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.7-3.6(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$ ); ${ }^{13} \mathrm{C}$ NMR $\delta 169.49,146.36,136.85,136.72,133.08$, $129.74,129.52,127.90,127.86,126.29,71.90,71.59,70.36,70.16$, $69.86,68.95,66.77,63.33,52.81$; mass spectrum (FD, ma), $m / z$ $376\left(\mathrm{M}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 55.32 ; \mathrm{H}$, $6.85 ; \mathrm{N}, 6.79$. Found: C, $55.18 ; \mathrm{H}, 6.81 ; \mathrm{N}, 6.59$. X-ray analysis (see text and paragraph below).

Acknowledgment. Funding from the American Cancer Society (Junior Faculty Award to S.C.Z.), the National Institutes of Health (Grant GM39782), and the National Science Foundation PYI Program (Grant CHE-8858202) is gratefully acknowledged. We thank Scott Wilson for assistance with the X-ray analysis and Dr. Gregory S. Hamilton for helpful discussions.

Registry No. 2, 118599-61-4; 3, 115912-73-7; 4, 115912-74-8; $4 \cdot 2 \mathrm{H}_{2} \mathrm{O}, 118599-85-2 ; 5,115960-26-4 ; 6,118599-62-5 ; 7,118599-63-6$; 8, 115912-72-6; 9, 118599-64-7; 10, 118599-65-8; 11a, 13620-31-0; 11b, 118599-66-9; 12, 118599-67-0; 13, 118599-68-1; 14a, 14593-43-2; 14b, 118599-69-2; 15a, 60276-38-2; 15b, 118599-70-5; 16a, 118599-71-6; 16b, 118599-72-7; 17a, 118599-73-8; 17a.HBr, 118599-75-0; 17b, 118599-74-9; 17b.2HCl, 118599-76-1; 18a, 118599-78-3; 18b, 118599-79-4; 19a, 931-35-1; 19b, 118599-77-2; 20b, 118599-80-7; 21a, 118599-81-8; 21b, 118599-82-9; 22a, 118599-83-0; 22b, 118599-84-1; 23, 118599-86-3; 24, 118599-87-4; $\mathrm{Me}_{2} \mathrm{NSO}_{2} \mathrm{Cl}, \quad 13360-57-1 ; \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(=\mathrm{NH}) \mathrm{OCH}_{2} \mathrm{CH}_{3} \cdot \mathrm{HCl}$, 40546-35-8; 1-benzylimidazole, 4238-71-5; benzyl alcohol, 100-51-6; allyl bromide, 106-95-6; 2-(benzoyloxy)ethanol, 622-08-2; propionyl nitrile, 107-12-0; 1,2-diaminopropane, 78-90-0; 1,3-bis(bromomethyl)benzene, 626-15-3; methyl 2,6-bis(bromomethyl)benzoate, 56263-51-5.

Supplementary Material Available: Positional and thermal parameters from the X-ray analysis of compound 4 ( 5 pages). Order information is given on any current masthead page.

# Reactivity of 1,3-Diaryl-2,4-bis(heteroarylimino)-1,3-diazetidines. Formation of $\mathbf{N}^{1}, \mathbf{N}^{2}, \mathbf{N}^{3}, \mathbf{N}^{4}, \mathbf{N}^{5}$-Pentasubstituted Biguanides 

Pedro Molina,* Mateo Alajarin, and Carmen López-Leonardo<br>Departamento de Química Orgânica, Facultad de Ciencias, Universidad de Murcia, Campus Universitario de Espinardo, 30001 Murcia, Spain<br>$\mathbf{M a}^{\mathrm{a}}$ de la Concepción Foces-Foces and Félix Hernández Cano<br>Departamento de Rayos X, Instituto de Quimica Fisica "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain<br>Rosa $\mathrm{M}^{a}$ Claramunt<br>Departamento de Quimica Orgánica, Facultad de Ciencias, UNED, 28040 Madrid, Spain<br>Josê Elguero<br>Instituto de Química Mêdica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain

Received August 16, 1988
$N^{1}, N^{3}-\mathrm{Di}(\mathrm{Ar})-N^{2}, N^{4}-\operatorname{bis}\left(6\right.$-methyl-3-(methylthio)-5-oxo-4,5-dihydro-1,2,4-triazin-4-yl)- $N^{5}$-( $R$ )-biguanides 2a-p were obtained by reacting 1,3-di(Ar)-2,4-bis ( $(6$-methyl-3-(methylthio)-5-oxo-4,5-dihydro-1,2,4-triazin-4-yl)imi-no)-1,3-diazetidines 1 with several primary amines, piperidine, and 1,1-dimethylhydrazine. The structure of the biguanides was established by a careful ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ study. To assign unambiguously the NMR signals, NOE difference experiments of compounds 2 b ( $\mathrm{Ar}=4-\mathrm{Cl}^{-} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CH}_{3}$ ), 21 ( $\mathrm{Ar}=\mathrm{R}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$ ), and $2 \mathrm{~m}(\mathrm{Ar}=$ $\mathrm{R}=4-\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}$ ) and 2-D heteronuclear ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation spectrum of 21 were used. Compound 2 a ( $\mathrm{Ar}=$ $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}=\mathrm{CH}_{3}$ ) was analyzed by X-ray crystallography. Cell constants were 17.1116 (24), 10.4410 (9), and 16.8613 (22) $\AA ; 107.98(1)^{\circ}$; the space group was $P 2_{1} / c$. Two intramolecular hydrogen bonds determine the conformation of the molecule.

The chemistry of 1,3-diaryl-2,4-bis(arylimino)-1,3-diazetidines, cyclodimers of $N, N^{\prime}$-diarylcarbodiimides, ${ }^{1}$ has
been little explored; it has been briefly mentioned that these compounds on sequential treatment with phosgene

## Scheme I



Scheme II


| 2 | Ar | R | 2 | Ar | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{C}_{6} \mathrm{H}_{5}$ | $\mathrm{CH}_{3}$ | L | 4. $\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}$ | $\mathrm{C}_{8} \mathrm{H}_{5}-\mathrm{CH}_{2}$ |
| b | 4-C1-C $\mathrm{C}_{6} \mathrm{H}_{4}$ | $\mathrm{CH}_{3}$ | 1 | $\mathrm{C}_{6} \mathrm{H}_{5}$ | 4. $\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CH}_{2}$ |
| \% | 4. $\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}$ | $\mathrm{CH}_{3}$ | $k$ | $4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$ | 4- $\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2}$ |
| $d$ | 4-C1-C $\mathrm{C}_{6} \mathrm{H}_{4}$ | $\mathrm{CH}_{2}=\mathrm{CH} \cdot \mathrm{CH}_{2}$ | L | 4.C1-C $\mathrm{C}_{6} \mathrm{H}_{4}$ | 4. $\mathrm{Cl}-\mathrm{C}_{5} \mathrm{H}_{4}$ |
| e | $\mathrm{C}_{6} \mathrm{H}_{5}$ | $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ | m | 4. $\mathrm{H}_{7} \mathrm{CO} \cdot \mathrm{C}_{8} \mathrm{H}_{4}$ | 4. $\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}$ |
|  | 4-CI-C $\mathrm{C}_{6} \mathrm{H}_{4}$ | $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ | n | 4-C1-C6 $\mathrm{H}_{4}$ | 4. $\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}$ |
| g | 4-Cl. $\mathrm{C}_{6} \mathrm{H}_{4}$ | $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ | $Q$ | $\mathrm{C}_{6} \mathrm{H}_{5}$ | - $\mathrm{CH}_{2} \cdot\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}_{2}$ - |
| h | $\mathrm{C}_{5} \mathrm{H}_{6}$ | $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OOC} \cdot \mathrm{CH}_{2}$ | $\underline{1}$ | $4-\mathrm{Cl}_{6} \mathrm{C}_{6}$ | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$ |

and aromatic amines yield perarylated diiminotriazinones. ${ }^{2}$ Recently, we have reported ${ }^{3}$ that the iminophosphorane derived from 4-amino-6-methyl-3-(methylthio)-5-oxo-4,5dihydro[1,2,4]triazine, reacts with aryl isocyanates to yield the corresponding 1,3-diaryl-2;4-bis(heteroarylimino)-1,3diazetidines 1 , which undergo hydrolytic cleavage to give [ $1,2,4$ ]triazolo $[5,1-c][1,2,4]$ triazine derivatives. In addition, compounds of type 1 undergo ring-opening reactions of the 1,3-diazetidine ring by the action of hydrazine and amidines to yield 3-(arylamino)-4-aryl-5-(heteroarylimino)4,5 -dihydro- $1 H$ - $\left[1,2,4\right.$ ]triazoles $3^{4}$ and 6-(arylamino)-2-(heteroarylimino)-1,2-dihydro[1,3,5]triazines $4,{ }^{5}$ respectively (Scheme I).

The formation of compounds 3 and 4 can be understood as an initial $\mathrm{C}-\mathrm{N}$ endocyclic bond fission of the fourmembered ring to give a biguanide as intermediate, which undergoes cyclization to give 3 or 4 . Thus, the 2,4 -di-imino-1,3-diazetidine ring was expected to be opened with a primary amine to give the $\mathrm{N}^{1}, \mathrm{~N}^{2}, \mathrm{~N}^{3}, \mathrm{~N}^{4}, \mathrm{~N}^{5}$-pentasubstituted biguanide. ${ }^{2,6}$ We now describe a new synthesis of pentasubstituted biguanides 2 based on the high reactivity of the four-membered ring in 1 , probably due to the release of strain energy, toward amino groups.

## Results and Discussion

## A. Preparation of $\mathbf{N}^{1}, \mathbf{N}^{2}, \mathbf{N}^{3}, \mathbf{N}^{4}, \mathbf{N}^{5}$-Pentasubstituted

 Biguanides. The only method previously reported ${ }^{2}$ for the preparation of pentasubstituted biguanides involves[^0]

Figure 1. View ${ }^{15}$ of the molecular conformation of compound $2 \mathrm{a} \cdot \mathrm{H}_{2} \mathrm{O}$.
treatment of $N, N^{\prime}$-diarylcarbodiimides with 0.5 mol of the corresponding arylamine. We have found that 1,3 -di-aryl-2,4-bis(heteroarylimino)-1,3-diazetidines 1 react with primary amines in dry methylene chloride at room temperature to give the $N^{1}, N^{3}$-diaryl- $N^{2}, N^{4}$-bis(heteroaryl)-$N^{5}$-substituted-biguanides 2 in 47-96\% yield (Scheme II). The reaction appears to be quite general; it proceeds satisfactorily for aliphatic amines with or without functional groups, unsaturated amines, aromatic and arylmethanamines; good results have also been obtained with secondary amines, e.g. 2o, and with 1,1-dimethylhydrazine, e.g. 2p. Advantages of the present route to pentasubstituted biguanides 2 are unambiguous position of the substituents, good yields, mild and convenient reaction conditions, and the possibility for the preparation of pentasubstituted biguanides bearing three different types of substituents (heteroaromatic, aromatic, and aliphatic).

On the other hand, it has been reported ${ }^{2}$ that pentaarylbiguanides by the action of carbonic acid derivatives undergo cyclization to give a six- or a four-membered ring. In our case, biguanides 2 did not react with diphenyl carbonate or $N, N^{\prime}$-carbonyldiimidazole in refluxing toluene. At higher temperatures biguanides 2 decompose. However, when biguanides $2 e$ and $2 f$ were heated in refluxing dry toluene the 2-(heteroarylimino) imidazolidine 5 and the corresponding [1,2,4]triazolo[5,1-c][1,2,4] triazine 6 were formed in moderate yields. No reaction took place if the biguanide was heated in refluxing methylene chloride for a prolonged period of time. The conversion $2 \rightarrow 5+$ 6 probably involves initial formation of the imidazolidine ring by addition of the $\mathrm{NH}_{2}$ group to the $\mathrm{C}=\mathrm{N}$ bond, followed by elimination of $N^{1}$-(heteroaryl)- $N^{2}, N^{3}$-diarylguanidine 7. The latter can then undergo cyclization and elimination of methanethiol to give $6^{7}$ (Scheme III).

Table I. Selected Geometrical Parameters ( $\AA$, deg)

| S1-C9 | 1.744 (6) | S2-C27 | 1.733 (6) |
| :---: | :---: | :---: | :---: |
| S1-C34 | 1.788 (12) | S2-C36 | 1.795 (13) |
| O1-C13 | 1.237 (9) | O2-C31 | 1.231 (6) |
| N1-C6 | 1.302 (8) | N4-C7 | 1.294 (7) |
| N2-C6 | 1.341 (7) | N5-C7 | 1.340 (7) |
| N2-C14 | 1.415 (6) | N5-C32 | 1.453 (10) |
| N3-C6 | 1.410 (6) | N3-C7 | 1.414 (8) |
| N8-C9 | 1.370 (8) | N26-C27 | 1.385 (7) |
| N8-C13 | 1.372 (8) | N26-C31 | 1.371 (6) |
| N10-C9 | 1.297 (7) | N28-C27 | 1.309 (9) |
| N11-C12 | 1.299 (9) | N29-C30 | 1.302 (8) |
| N1-N8 | 1.409 (6) | N4-N26 | 1.409 (7) |
| N10-N11 | 1.380 (7) | N28-N29 | 1.375 (8) |
| C12-C13 | 1.447 (9) | C30-C31 | 1.453 (8) |
| C12-C33 | 1.488 (11) | C30-C35 | 1.472 (10) |
| N3-C20 | 1.440 (7) |  |  |
| C34-S1-C9-N8 | 179.8 (5) | C36-S2-C27-N26 | -173.0 (6) |
| C6-N1-N8-C9 | 127.9 (5) | C7-N4-N26-C27 | 125.0 (6) |
| N8-N1-C6-N2 | 165.2 (5) | N5-C7-N4-N26 | 166.9 (5) |
| H2-N2-C6-N3 | -18 (5) | H5-N5-C7-N3 | -18 (5) |
| $\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 6-\mathrm{N} 2$ | -40.7 (7) | C6-N3-C7-N5 | -45.9 (7) |
| C6-N3-C20-C25 | 129.0 (6) | C7-N3-C20-C21 | 126.4 (6) |
| C6-N2-C14-C15 | 129.9 (6) |  |  |
| N2... ${ }^{2}$ | 2.867 (6) | N5...01 | 2.914 (8) |
| $\mathrm{N} 2-\mathrm{H} 2$ | 0.98 (7) | N5-H5 | 0.90 (8) |
| H2..O2 | 2.01 (7) | H5...O1 | 2.07 (8) |
| N2-H2 . 02 | 145 (6) | N5-H5 ${ }^{\text {O-O1 }}$ | 156 (6) |
| O3...N10 | 3.09 (2) | O3..N28 (-X, -Y, $1-\mathrm{Z}$ ) | 3.29 (2) |
| N10‥03..N28 (-X, -Y, 1-Z) 139.4 (7) |  |  |  |

Although it has been reported ${ }^{2}$ that pentaarylbiguanides dissociate and recombine on heating, causing scrambling of N -substituents, when biguanides $2 \mathbf{a}-\mathbf{d}$ and $\mathbf{2 g - o}$ were heated in refluxing toluene they were recovered unchanged.
B. X-ray Diffraction Study of $N^{1}, N^{3}$-Diphenyl$N^{2}, N^{4}$-bis(6-methyl-3-(methylthio)-5-oxo-4,5-dihydro-1,2,4-triazin-4-yl)- $N^{5}$-methylbiguanide ( 2 a ) ( $\mathbf{1 ~ H}_{2} \mathrm{O}$ ). The bond character distribution is well described by the bond distances shown in Table I, according to the atomic numbering given in Figure 1, with all $\mathrm{sp}^{2}$ nitrogen atoms being planar.

The $N^{2}-C^{6}-N^{3}-C^{7}-N^{5}$ central part of the molecule has a helical conformation (see Figure 1), connecting both $\mathrm{N}-\mathrm{H}$ to the oxygen atoms through intramolecular hydrogen bonds ( $\mathrm{N} 2-\mathrm{H} 2 \cdot \mathrm{O}_{2}$ and $\mathrm{N} 5-\mathrm{H} 5 \cdot \cdot \mathrm{O} 1$ ). The rest of the molecule surrounds this central part, with the rings nearly perpendicular to the axis of that helix. The two heterocycles are somewhat puckered (see Table I) and are situated as to give a pseudobinary axis to the molecule (see Figure 1). The hydrogen atoms of the water molecule, that could not be located, are implied in the hydrogen bonds involving this molecule.
C. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Analyses of Biguanides $2 \mathrm{a}-\mathrm{p}$. Once the crystal structure determination of compound 2a had proven that it was an $\mathrm{N}^{1}, \mathrm{~N}^{2}, \mathrm{~N}^{3}, \mathrm{~N}^{4}, \mathrm{~N}^{5}$-pentasubstituted biguanide, we proceeded to assign the ${ }^{13} \mathrm{C}$ NMR signals to the different carbons. The chemical shifts of $3-\mathrm{SCH}_{3}$ (13.50-14.24), 6- $\mathrm{CH}_{3}(17.41-17.69), \mathrm{C}_{3}(158.46-159.27), \mathrm{C}_{5}$ (147.01-151.48), and $\mathrm{C}_{6}$ (152.67-153.79) of 6-methyl-3-(methylthio)-5-oxo-4,5-dihydro-1,2,4-triazin-4-yl substituents on $\mathrm{N}^{2}$ and $\mathrm{N}^{4}$ present small differences, which, in some cases, are only observed in the second significant figure. The assignment of these signals was straightforward on the basis of the multiplicity of signals and the averaged values of the coupling constants, in agreement with our previously published results: ${ }^{3} \mathrm{C}_{3}$ (quartet) ${ }^{3} J \sim 4 \mathrm{~Hz}, \mathrm{C}_{5}$ (quartet) ${ }^{3} J \sim 3 \mathrm{~Hz}, \mathrm{C}_{6}$ (quartet) ${ }^{2} J \sim 7 \mathrm{~Hz}, 3-\mathrm{SCH}_{3}$ (quartet) ${ }^{1} J \sim 143 \mathrm{~Hz}, 6-\mathrm{CH}_{3}$ (quartet) ${ }^{1} J \sim 130 \mathrm{~Hz}$.

Aryl groups on $\mathrm{N}^{1}$ and $\mathrm{N}^{3}$ have been differentiated on the basis of (i) the fully proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra of 21 and 2 m , symmetrical biguanides, with the signals of

[^1]Chart I

| Substituent | $\delta\left({ }^{13} \mathrm{C}\right)$ | $\delta\left({ }^{1} \mathrm{H}\right)$ |  |
| :---: | :---: | ---: | :---: |
|  | $3-\mathrm{SCH}_{3}$ | 13.82 | 2.24 |
| $6-\mathrm{CH}_{3}$ | 17.69 | 2.50 |  |
| $\mathrm{~N}^{1}-\mathrm{Ar}$ | $\left\{\begin{array}{l}\mathrm{C}_{2}-\mathrm{H}_{2}\left(\mathrm{C}_{6}-\mathrm{H}_{6}\right) \\ \mathrm{C}_{3}-\mathrm{H}_{3}\left(\mathrm{C}_{5}-\mathrm{H}_{5}\right) \\ \mathrm{N}^{3}-\mathrm{Ar}\end{array}\right.$ | $\left\{\begin{array}{l}\mathrm{C}_{2}-\mathrm{H}_{2}\left(\mathrm{C}_{6}-\mathrm{H}_{6}\right) \\ \mathrm{C}_{3}-\mathrm{H}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\end{array}\right.$ | 122.05 |

the $\mathrm{N}^{1}$-Ar being of double intensity as compared with those of $\mathrm{N}^{3}$ - Ar ; (ii) the multiplicity of the phenyl signals in the normal ${ }^{13} \mathrm{C}$ NMR spectra with ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ coupling constant values ( ${ }^{1} J \sim 160 \mathrm{~Hz},{ }^{3} J \sim 6 \mathrm{~Hz},{ }^{2} J \sim 1 \mathrm{~Hz}$ ) according to literature ${ }^{8}$ and a ${ }^{3} J$ coupling between $\mathrm{C}_{2}\left(\mathrm{C}_{6}\right)$ of the $N^{1}$-aryl substituent and $\mathrm{N}^{1}-\mathrm{H}$ of nearly 3 Hz ; (iii) the substituent chemical shifts (SCS) effects due to chlorine or methoxy groups on a phenyl derivative. ${ }^{8}$ Thus, for instance, for compound $2 a$ the following values are found: $\mathrm{N}^{1}-\mathrm{Ar}, \mathrm{C}_{1}$, $138.51, \mathrm{C}_{2}$ and $\mathrm{C}_{6}, 120.51, \mathrm{C}_{3}$ and $\mathrm{C}_{5}, 129.10, \mathrm{C}_{4}, 124.26$, and $\mathrm{N}^{3}-\mathrm{Ar}, \mathrm{C}_{1}, 134.51, \mathrm{C}_{2}$ and $\mathrm{C}_{6}, 122.93$ and 122.97, $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$, $128.94, \mathrm{C}_{4}, 128.01 \mathrm{ppm}$.

The most interesting feature is the nonequivalence of the chemical shifts of ortho $\left(\mathrm{C}_{2}\right.$ and $\mathrm{C}_{6}$ ) and meta ( $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$ ) carbons of the $\mathrm{N}^{3}$-aryl group, this anisochrony being dependent on the nature of the substituents on the biguanide, ranging from accidentally equivalent in $2 \mathbf{k}$ ( Ar $\left.=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}=4-\mathrm{H}_{3} \mathrm{OC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2}\right)$, with $\mathrm{C}_{2}$ and $\mathrm{C}_{6}$ at 124.39 ppm and $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$ at 129.00 ppm , to clearly different as in $2 \boldsymbol{h}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}_{2} \mathrm{C}-\mathrm{CH}_{2}\right)$, where $\mathrm{C}_{2}$ and $\mathrm{C}_{6}$ appear at $122.82-123.08 \mathrm{ppm}(\Delta \delta=0.26 \mathrm{ppm})$ and $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$ appear at $128.83-129.14 \mathrm{ppm}(\Delta \delta=0.31$ $\mathrm{ppm})$. Since the anisochrony did not vary when spectra were recorded at $50^{\circ} \mathrm{C}$ but disappeared in the symmetrical biguanides 21 ( $\mathrm{Ar}=\mathrm{R}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$ ) and $2 \mathrm{~m}(\mathrm{Ar}=\mathrm{R}=$ $4-\mathrm{H}_{3} \mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}$ ), the reason for the nonequivalence must be the hindered rotation about the $\mathrm{N}^{3}\left(\mathrm{sp}^{2}\right)-\mathrm{C}^{20}\left(\mathrm{sp}^{2}\right)$ bond together with the intrinsic chirality of the molecule related to the spatial arrangement discussed before in the crystalline structure of 2 a (Figure 1).

Carbon atoms $\mathrm{C}_{\mathrm{a}}$ and $\mathrm{C}_{\mathrm{b}}$ of the $\mathrm{C}=\mathrm{N}$ bonds have been assigned from fully proton-coupled spectra by their multiplicity ( $\mathrm{C}_{\mathrm{b}}$ is coupled with the R group; for instance, in compound $2 \mathrm{a}, \mathrm{C}_{\mathrm{b}}$ is coupled with the $N$-methyl group with a ${ }^{3} J=3.6 \mathrm{~Hz}$ ) and appear at $\sim 153$ and $\sim 156 \mathrm{ppm}$, respectively. Chemical shifts of other substituents do not deserve any particular comments, unless in the case of 20 ( $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}=$ piperidine) where $\alpha$ - and $\beta$-carbons of the piperidine ring are anisochronous, another proof of the molecular chirality.

In order to assign the ${ }^{1} \mathrm{H}$ NMR signals, a heteronuclear $2 \mathrm{D}^{1} \mathrm{H}^{-13} \mathrm{C}$ correlation spectrum of $21\left(\mathrm{Ar}=\mathrm{R}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ was run, leading to the conclusion that in this biguanide there exist the relationships shown in Chart I.

Here again, multiplicity of the signals and SCS effects produced by introduction of a chlorine or a methoxy group ${ }^{9}$ have been considered in assigning aryl groups.
$\mathrm{H}_{2}$ and $\mathrm{H}_{6}$ protons of $N^{3}$-aryl groups are anisochronous, and, in some cases, this nonequivalence was also observed for $\mathrm{H}_{3}$ and $\mathrm{H}_{5}$ protons as in $2 \mathbf{b}, 2 \mathbf{g}$, and $2 \mathbf{k}$. The origin of this phenomenon has already been discussed in the ${ }^{13} \mathrm{C}$ NMR part.

Attention must be paid to the fact that in our previous work ${ }^{3}$ the tentative assignment of protons in 1,3-bis(4-chlorophenyl)-2,4-bis(6-methyl-3-(methylthio)-5-oxo-4,5-

[^2]dihydro-1,2,4-triazin-4-ylimino)-1,3-diazetidine (1b) was wrong, the $p$-chlorophenyl groups were reversed. The error came from the ${ }^{1} \mathrm{H}$ NMR model chosen, $p$-chloroaniline instead of $p$-chloroacetanilide.
Assignment of $\mathrm{N}^{1}-\mathrm{H}(\sim 9.6 \mathrm{ppm}), \mathrm{N}^{5}-\mathrm{H}(\sim 7.8 \mathrm{ppm})$, and protons of the $\mathrm{N}^{5}-\mathrm{R}$ substituent has been performed, taking into account the different multiplicity and SCS effects. In 20 , similarly to what occurred in ${ }^{13} \mathrm{C}$ NMR, equatorial and axial $\alpha$-protons of the piperidine ring are diastereotopic.

To confirm the unambiguous assignment of aromatic protons of biguanides 2, we have carried out a series of NOE experiments. From the X-ray structure of compound 2a (Figure 1) the following distances shorter than $5 \AA$ can be found: $\mathrm{S}-\mathrm{Me} / \mathrm{H}_{3}, \mathrm{H}_{5}$ in $\mathrm{N}^{3}-\mathrm{Ar}=4.2 \AA ; \mathrm{S}-\mathrm{Me} / \mathrm{H}_{2}, \mathrm{H}_{6}$ in $\mathrm{N}^{3}-\mathrm{Ar}=4.7 \AA ; \mathrm{C}-\mathrm{Me} / \mathrm{H}_{2}, \mathrm{H}_{6}$ in $\mathrm{N}^{3}-\mathrm{Ar}=3.8 \AA ; \mathrm{C}-\mathrm{Me} / \mathrm{H}_{3}, \mathrm{H}_{5}$ in $\mathrm{N}^{3}-\mathrm{Ar}=4.9 \AA ; \mathrm{N}-\mathrm{Me} / \mathrm{H}_{2}, \mathrm{H}_{6}$ in $\mathrm{N}^{3}-\mathrm{Ar}=4.7 \AA ; \mathrm{N}-$ $\mathrm{Me} / \mathrm{H}_{2}, \mathrm{H}_{6}$ in $\mathrm{N}^{1}-\mathrm{Ar}=4.7 \AA$.

The experiments were performed on compounds $2 \mathbf{b}, \mathbf{2 l}$, and 2 m . Since they yielded identical results, only those concerning $2 \mathrm{~b}\left(\mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CH}_{3}\right.$ ) will be described:


Irradiation of the 2.23 ppm signal produces a clear increase of the 7.01 ppm signal and a somewhat lower increase of the 6.64 ppm signal. On irradiation of the $\sim 2.47$ ppm signals only the 6.64 ppm signal was affected. Irradiation of the $N$-methyl signal at 3.12 ppm modifies the intensities of the 7.61 and 6.64 ppm signals. These weak NOE effects, although observable only in a differential spectra, are useful to assign $\mathrm{H}_{\text {ortho }}\left(\mathrm{H}_{2}\right.$ and $\mathrm{H}_{6}$ ) and $\mathrm{H}_{\text {meta }}$ ( $\mathrm{H}_{3}$ and $\mathrm{H}_{5}$ ) protons of both phenyl rings. Moreover, these experiments prove that the structure in the solid state (X-ray) and in solution (NMR) are very similar.

## Conclusions

The pentasubstituted biguanides 2 , now readily accessible, present an unexpected and rather interesting structure. The five-membered pseudocycle, although formed exclusively by $\mathrm{sp}^{2}$ atoms, is chiral as shown by the anisochrony of protons and carbon atoms. The chiral helicity is due to hydrogen bonds that fix the pseudocycle and to the five bulky substituents. The structure found in the solid state is representative of the behavior in solution, not only of the physicochemical aspects (NOE experiments) but also of the chemical reactivity. A simple examination of Figure 1 shows why biguanides 2 do not react with diphenyl carbonate to form a triazinone: the $\mathrm{N}^{2}-\mathrm{N}^{5}$ distance is too great to allow for the formation of an $\mathrm{N}-\mathrm{CO}-\mathrm{N}$ bridge.

## Experimental Section

General Methods. All melting points were determined on a hot-plate melting point apparatus and are uncorrected. IR were obtained as Nujol emulsions or KBr disks on a Nicolet FT-5 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on one of the following spectrometers: Varian FT-80 ( 80 MHz ) or Varian XL-300 ( 300 MHz ). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian XL-300 ( 75 MHz ): spectral width 16000 Hz , number of data points 65536 (memory size 64 K ), acquisition time 2.0 s (digital resolution 0.5 Hz per point), pulse width $5.0 \mu \mathrm{~s}$, relaxation delay 1.3 s . Chemical shifts ( $\delta$ ) in ppm and coupling constants ( $J$ ) in hertz were measured in deuteriochloroform referred to TMS as internal standard. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are accurate to 0.01 and 0.1 ppm , respectively. Coupling constants are accurate to 0.2 Hz for ${ }^{1} \mathrm{H}$ NMR and 0.5 Hz for ${ }^{13} \mathrm{C}$ NMR. These accuracies

## Table II. Crystal Analysis Parameters at Room

Temperature
Crystal Data

## formula

crystal habit
crystal size (mm)
$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{11} \mathrm{O}_{2} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
transparent, colorless, triangular plate
$0.33 \times 0.07$
symmetry
unit cell determination
monclinic, $P 2_{1} / c$
least-squares fit from 77
reflexions ( $\theta<45^{\circ}$ )
unit cell dimensions $\quad 17.1116(24), 10.4410(9)$,
16.8613 (22) $\AA$
$90,107.98$ (1), $90^{\circ}$
packing: $V\left(\AA^{3}\right), Z$
2865.4 (6), 4
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right), M, F(000)$
$1.381,595.7,1248$
20.50

Experimental Data
technique
four circle diffractometer: Philips PW1100
bisecting geometry
graphite oriented monochromator: $\mathrm{Cu} \mathrm{K} \alpha$
$w / 2 \theta$ scans, scan width $1.6^{\circ}$
detector apertures $1 \times 1^{\circ}$, up $\theta_{\text {max }} 65^{\circ}$
$1 \mathrm{~min} /$ reflex
number of reflexions
independent
observed
standard reflexions
4878
3019 ( $I>3 \sigma(I)$ criterion)
2 reflexiones every 90 min
variation: no
max-min transmission $\quad 1.233-0.673$
factors
Solution and Refinement
solution
direct methods
refinement LS on $F_{\text {obsd }}$ with 2 blocks
parameters
number of variables
478
degrees of freedom
ratio of freedom
H atoms
final shift/error
$w$ scheme
max thermal value
final $\Delta F$ peaks
final $R$ and $R_{w}$
computer and programs
scattering factors
2541
6.3
difference synthesis
0.27
empirical as to give no trends in
$\left\langle\omega \Delta^{2} F\right\rangle$ vs $\langle | F_{0}| \rangle$ and $\langle\sin \theta / \lambda\rangle$
$U 11(03)=0.34(2) \AA^{2}$
$0.29 \mathrm{e} \AA^{-8}$
0.074, 0.079

Vax 11/750, XRAY76 System, ${ }^{11}$
MULTAN80, ${ }^{12}$ DIFABS ${ }^{13}$
Int. Tables for X-ray Crystallography ${ }^{14}$
correspond to the experimental conditions used in each case. Two-dimensional spectra were recorded by using standard conditions. ${ }^{10}$ Mass spectra were recorded on a Hewlett-Packard 5993C instrument. Microanalyses were performed on a PerkinElmer 240 C instrument. Crystal and experimental data and refinement parameters are given in Table II.

Materials. 1,3-Diaryl-2,4-bis(heteroarylimino)-2,4-diazetidines 1 were prepared as described in the literature. ${ }^{3}$
Preparation of $\mathbf{N}^{1}, \mathbf{N}^{2}, \mathbf{N}^{3}, \mathbf{N}^{4}, \mathbf{N}^{6}$-Pentasubstituted Biguanides 2. General Procedure. To a well-stirred solution of the appropriate 1,3 -diaryl-2,4-bis(heteroarylimino)-1,3-diazetidine $1(2 \mathrm{mmol})$ in 25 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added the adequate amine ( 2 mmol ). The resultant solution was stirred at room temperature
(10) Croasman, W. R.; Carlson, R. M. K. Two-Dimensional NMR Spectroscopy. Application for Chemists and Biochemists; VCH: New York, 1987.
(11) Stewart, J. M.; Machin, P. A.; Dickinson, C. W.; Ammon, H. L.; Heck, H.; Flack, H. The X-Ray system, 1976. Technical Report TR-446, Computer Science Center, University of Maryland.
(12) Main, P.; Fiske, S. J.; Hull, S. E.; Lessinger, L.; Germain, G.; Declerca, J. P.; Woolfson, M. M. Multan 80 System; 1980, University of York, England.
(13) Walker, N.; Stuart, D. Difabs. Acta Crystallogr. 1983, A39, 158.
(14) International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV.
(15) Allen, F. H.; Bellard, S.; Brice, M. D.; Cartwright, B. A.; Doubleday, A.; Higgs, H.; Hummelink, T.; Hummelink-Peters, B. G.; Kennard, O.; Motherwell, W. D. S.; Rogers, J. R.; Watson, D. G. Acta Crystallogr. 1979, B35, 2331.
for 24 h , and the solvent was removed under reduced pressure at $25^{\circ} \mathrm{C}$. The residual material was slurried with 10 mL of cold ethanol. The separated solid was collected by filtration, air-dried, and recrystallized from ethanol to give 2.

2a: yield $93 \%$; mp $212-214^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3336, $3256,1660,1557,1302 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 304 (19), 273 (29), 212 (15), 133 (100), 132 (24), 115 (39), 47 (61). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{11} \mathrm{O}_{2} \mathrm{~S}_{2}$ : C, 51.98 ; H, 4.71; N, 26.67. Found: C, 51.79 ; H, 4.82 , N, 26.62 .

2b: yield $64 \%$; mp $228-230^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3336, $3285,1670,1614,1586,1550,1308,1285 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 307 (10), 212 (10), 153 (16), 151 (9), 139 (7), 137 (11), 47 (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{11} \mathrm{O}_{2} \mathrm{~S}_{2}$ : C, 46.44; H, 3.90; N, 23.83. Found: C, 46.35; H, 3.75; N, 23.95.

2c: yield $83 \%$; $\operatorname{mp} 212-213^{\circ} \mathrm{C}$; pale yeliow prisms; IR (Nujol) $3324,3080,1665,1546,1506,1246 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 334 (5), 303 (6), 212 (10), 163 (20), 147 (63), 134 (10), 47 (100). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{11} \mathrm{O}_{4} \mathrm{~S}_{2}$ : C, $50.85 ; \mathrm{H}$, 4.90; N, 24.16. Found: C, 50.97; H, 5.13; N, 24.29.

2d: yield $73 \%$; mp $218-220^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3296, $3115,1665,1613,1574,1557,1308,1291 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 2.30\left(\mathrm{~s}, 2 \mathrm{CH}_{3} \mathrm{~S}\right), 2.55\left(\mathrm{~s}, 2 \mathrm{CH}_{3}\right), 4.10-4.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\right.$ $\left.\mathrm{CH}_{2}\right), 5.20-5.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.45-6.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 6.80-8.20 (m, $\left.8 \mathrm{H}, \mathrm{Ar}+\mathrm{N}^{5}-\mathrm{H}\right), 9.90\left(\mathrm{~s}, \mathrm{~N}^{1}-\mathrm{H}\right) ;$ mass spectrum, $m / z$ (relative intensity) 362 (10), 307 (10), 238 (15), 192 (10), 152 (30), 127 (25), 111 (15), 47 (100). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{11} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 48.21 ; \mathrm{H}, 4.05 ; \mathrm{N}, 22.91$. Found: C, 48.28 ; $\mathrm{H}, 3.96$; N, 22.83 .

2e: yield $96 \%$; $\operatorname{mp} 212-214^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3273 , $3083,1665,1568,1304 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 366 (10), 273 (10), 240 (60), 172 (22), 161 (47), 160 (34), 156 (35), 131 (20), 124 (100), 111 (28), 104 (27). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$ : C, 51.47; H, 4.98; N, 27.70. Found: C, $51.35 ; \mathrm{H}$, 4.79; N, 27.83 .

2f: yield $95 \%$; mp $195-197^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3364 , $3296,3233,1664,1551,1489,1308,1291 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ o $1.60-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.30\left(\mathrm{~s}, 2 \mathrm{CH}_{3} \mathrm{~S}\right), 2.55\left(\mathrm{~s}, 2 \mathrm{CH}_{3}\right)$, $3.90-4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 4.40-4.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 6.47-7.03$ (m, $4 \mathrm{H}, \mathrm{N}^{3}-\mathrm{Ar}$ ), $7.30-7.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}^{1}\right.$ - Ar ), 7.64 (br s, $\left.\mathrm{N}^{5}-\mathrm{H}\right), 10.00$ (br s, $\mathrm{N}^{1}-\mathrm{H}$ ); mass spectrum, $m / z$ (relative intensity) 388 (11), 386 (20), 276 (10), 248 (15), 193 (8), 192 (64), 165 (27), 164 (40), 163 (57), 154 (31), 153 (20), 152 (100), 140 (22), 138 (69), 127 (39), 113 (24), 111 (77), 102 (20). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$ : C, $46.22 ; \mathrm{H}, 4.18 ; \mathrm{N}, 24.88$. Found: C, $46.15 ; \mathrm{H}, 4.23 ; \mathrm{N}, 24.95$.

2 g : yield $91 \%$; mp $202-204^{\circ} \mathrm{C}$; pale yellow prisms; IR (Nujol) $3336,3296,3200,3120,1665,1602,1585,1563,1546,1302,1291$ $\mathrm{cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 309 (2), 307 (6), 197 (4), 195 (12), 172 (5), 156 (6), 152 (10), 127 (10), 111 (10), 47 (100). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{11} \mathrm{O}_{3} \mathrm{~S}_{2}$ : C, 46.15; H, 4.02; N, 22.77. Found: C, 46.16; H, 3.98; N, 22.62.

2h: yield $85 \%$; mp $172-174^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3296, $3100,1750,1665,1568,1308,1296,1200 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 376 (17), 329 (16), 273 (38), 210 (20), 194 (12), 177 (23), 156 (11), 146 (24), 131 (76), 119 (28), 117 (23), 115 (52), 104 (13), 77 (50), 47 (100). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{11} \mathrm{O}_{4} \mathrm{~S}_{2}$ : C, 51.76; H, 4.81; N, 23.71. Found: C, 51.63; H, 4.93; N, 22.63.

2i: yield $56 \%$; mp $115-116^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3296 , 3080, 1660, 1557, 1512, 1308, $1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.25$ $\left(\mathrm{s}, 2 \mathrm{CH}_{3} \mathrm{~S}\right), 2.50\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.55\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.90(\mathrm{~s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 4.73(\mathrm{dd}, 1 \mathrm{H}), 4.90(\mathrm{dd}, 1 \mathrm{H}), 6.5-7.9(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}), 8.20$ ( $\mathrm{t}, \mathrm{N}^{5}-\mathrm{H}$ ), $9.55\left(\mathrm{~s}, \mathrm{~N}^{1}-\mathrm{H}\right)$; mass spectrum, $m / z$ (relative intensity) 410 (10), 303 (20), 264 (15), 238 (10), 157 (10), 147 (72), 133 (20), 121 (15), 106 (15), 91 (100), 47 (26). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{11} \mathrm{O}_{4} \mathrm{~S}_{2}$ : C, $55.53 ; \mathrm{H}, 4.94$; N, 21.58. Found: C, $55.68 ; \mathrm{H}, 5.09$; N, 21.39.

2j: yield $83 \%$; mp 181-183 ${ }^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3358, $3279,1659,1597,1580,1552,1512,1302 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 273 (20), 136 (37), 121 (100), 115 (26), 77 (20), 47 (58). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{11} \mathrm{O}_{3} \mathrm{~S}_{2}$ : C, $56.21 ; \mathrm{H}, 4.86 ; \mathrm{N}$, 22.53. Found: $\mathrm{C}, 56.33 ; \mathrm{H}, 5.03 ; \mathrm{N}, 22.69$.

2k: yield $90 \%$; mp $217-218^{\circ} \mathrm{C}$; brown prisms; IR (Nujol) 3290, $3200,3100,1670,1568,1552,1308,1240 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$
(relative intensity) 309 (10), 307 (18), 136 (15), 122 (10), 121 (100), 99 (15), 47 (62). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{11} \mathrm{O}_{3} \mathrm{~S}_{2}: \mathrm{C}, 51.06 ; \mathrm{H}$, 4.15; N, 20.47. Found: C, $50.93 ; \mathrm{H}, 4.28 ; \mathrm{N}, 20.39$.

21: yield $47 \% ; \operatorname{mp} 222-224^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3250, $3188,3100,1664,1602,1568,1552,1308 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 309 (5), 307 (15), 264 (10), 262 (15), 153 (14), 129 (5), 127 (14), 113 (10), 111 (28), 47 (100). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{11} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 48.49 ; \mathrm{H}, 3.53 ; \mathrm{N}, 20.73$. Found: C, 48.53 ; H, 3.42; N, 20.66 .

2m: yield $55 \%$; mp $150-152^{\circ} \mathrm{C}$; colorless needles; IR (Nujol) $3279,3239,1659,1563,1512,1303,1251 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 303 (13), 254 (73), 239 (90), 147 (50), 123 (6), 107 (5), 106 (14), 47 (100). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{11} \mathrm{O}_{5} \mathrm{~S}_{2}$ : C, 54.31; H, 4.83; N, 21.11. Found: C, 54.19; H, 4.70; N, 20.98.

2n: yield $64 \%$; mp $218-220^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3245 , $3200,3100,1664,1608,1568,1308 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.25$ (s, $2 \mathrm{CH}_{3} \mathrm{~S}$ ), $2.55\left(\mathrm{~s}, 2 \mathrm{CH}_{3}\right), 3.85\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}\right), 6.7-8.0(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar})$, $9.70\left(\mathrm{~s}, \mathrm{~N}^{5}-\mathrm{H}\right), 10.00\left(\mathrm{~s}, \mathrm{~N}^{1}-\mathrm{H}\right)$; mass spectrum, $m / z$ (relative intensity) 307 (10), 305 (10), 264 (8), 262 (14), 260 (5), 258 (17), 245 (7), 243 (17), 153 (18), 152 (5), 149 (9), 127 (8), 125 (20), 113 (7), 111 (21), 47 (100). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{11} \mathrm{O}_{3} \mathrm{~S}_{2}$ : C, 50.41 ; H, 3.96; N, 20.86. Found: C, 50.33; H, 4.08; N, 21.02 .

2o: yield $95 \%$; mp $226-228^{\circ} \mathrm{C}$; yellow prisms; IR (Nujol) 3233, $3182,1676,1653,1596,1551,1308,1274 \mathrm{~cm}^{-1}$; mass spectrum, $m / z$ (relative intensity) 358 (5), 311 (6), 310 (20), 282 (6), 273 (15), 266 (5), 212 (10), 202 (15), 187 (35), 172 (8), 156 (5), 131 (20), 118 (35), 104 (13), 91 (20), 84 (100), 77 (50), 47 (50). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{11} \mathrm{O}_{2} \mathrm{~S}_{2} ; \mathrm{C}, 55.13 ; \mathrm{H}, 5.26 ; \mathrm{N}, 24.39$. Found: C, $55.03 ; \mathrm{H}$, 5.12; N, 24.30 .

2p: yield $61 \% ; \operatorname{mp} 182-184^{\circ} \mathrm{C}$; colorless prisms; IR (Nujol) $3245,3137,1682,1620,1574,1495,1308,1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.23\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.24\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.46\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.47(\mathrm{~s}$, $\mathrm{CH}_{3}$ ), $2.73\left(\mathrm{~s}, \mathrm{Me}_{2} \mathrm{~N}\right), 6.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}^{3}-\mathrm{Ar}\right), 6.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}^{3}-\mathrm{Ar}\right)$, $7.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}^{3}-\mathrm{Ar}\right), 7.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}^{1}-\mathrm{Ar}\right), 7.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}^{1}\right.$-Ar), $8.51\left(\mathrm{~s}, \mathrm{~N}^{5}-\mathrm{H}\right), 9.73\left(\mathrm{~s}, \mathrm{~N}^{1}-\mathrm{H}\right)$; mass spectrum, $m / z$ (relative intensity) 366 (5), 276 (5), 210 (6), 172 (5), 156 (5), 152 (7), 111 (15), 69 (100). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$ : C, 46.22; H, 4.18; N, 24.88. Found: C, 46.05; H, 4.13; N, 24.76.

Thermal Treatment of Biguanides 2 e and 2 f . A well-stirred suspension of the appropriate biguanide 2 e or $2 \mathrm{f}(3 \mathrm{mmol})$ in 50 mL of dry toluene was heated at reflux temperature for 48 h . After cooling, the separated solid was collected by filtration and treated with 10 mL of DMSO. The remaining solid was separated by filtration and recrystallized from ethanol to give 6. ${ }^{3}$ The filtrate was poured into 10 mL of cold water, and the precipitated solid was collected by filtration, washed with cold ethanol, and recrystallized from ethanol to give 5: 0.30 g ( $43 \%$ ); mp 296-298 ${ }^{\circ} \mathrm{C}$; yellow crystals; IR (Nujol) $3319,3160,1662,1626,1598,1513$, $1289 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~S}\right), 2.45(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.40\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 7.10(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH})$; mass spectrum, $m / z$ (relative intensity) $240\left(\mathrm{M}^{+}, 26\right), 157$ (10), 152 (15), 128 (20), 125 (15), 124 (92), 111 (30), 98 (100), 84 (28), 70 (98), 47 (35). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{OS}$ : C, $39.99 ; \mathrm{H}, 5.03$; N, 34.98 . Found: C, 39.85; H, 4.97; N, 34.92.

Registry No. 1a, 111969-38-1; 1b, 111981-41-0; 1c, 111969-40-5; 2a, 118458-63-2; 2b, 118458-64-3; 2c, 118458-65-4; 2d, 118458-66-5; 2e, 118458-67-6; 2f, 118458-68-7; 2g, 118458-69-8; 2h, 118458-70-1; 2i, 118473-73-7; 2j, 118458-71-2; 2k, 118458-72-3; 21, 118458-73-4; 2m, 118458-74-5; 2n, 118458-75-6; 20, 118458-76-7; 2p, 118458-77-8; 5, 118458-78-9; 6e, 96546-30-4; 6f, 96546-28-0; $\mathrm{H}_{2} \mathrm{NCH}_{3}, 74-89-5$; $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, 107-11-9 ; \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}, 107-15-3 ; \mathrm{H}_{2} \mathrm{~N}(\mathrm{C}-$ $\left.\mathrm{H}_{2}\right)_{2} \mathrm{OH}, 141-43-5 ; \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 459-73-4 ; \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, 100-46-9; 4- $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}, 2393-23-9 ; 4-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Cl}, 106-47-8$; $4-\mathrm{H}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}, 104-94-9 ; \mathrm{H}_{2} \mathrm{NN}\left(\mathrm{CH}_{3}\right)_{2}, 57-14-7$; piperidine, 110-89-4.

Supplementary Material Available: Tables of final atomic parameters, bond distances and angles, ${ }^{13} \mathrm{C}$ NMR data (chemical shifts and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ coupling constants), and ${ }^{1} \mathrm{H}$ NMR data (chemical shifts and ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ coupling constants) (21 pages). Ordering information is given on any current masthead page.


[^0]:    (1) Richter, R. Chem. Ber. 1968, 101, 174.
    (2) Richter, R.; Ulrich, H. J. Org. Chem. 1981, 46, 3011.
    (3) Molina, P.; Alajarin, M.; Sáez, J. R.; Foces-Foces, C.; Cano, F. H.; Claramunt, R. M.; Elguero, J. J. Chem. Soc., Perkin Trans. 1 1986, 2037.
    (4) Molina, P.; Alajarin, M.; Löpez-Leonardo, C.; Elguero, J.; Claramunt, R. M. Tetrahedron 1987, 43, 791.
    (5) Molina, P.; Alajarin, M.; López-Leonardo, C. Synthesis 1988, 150.
    (6) Kurzer, F.; Pitchfork, E. D. Forschr. Chem. Forsch. 1968, 10, 375.

[^1]:    (7) Molina, P.; Alajarin, M.; Ferao, A. Heterocycles 1986, 24, 3363.

[^2]:    (8) Kalinowski, H. O.; Berger, S.; Braun, S. Carbon-13 NMR Spectroscopy; Wiley: New York, 1988.
    (9) Pretsch, E.; Clerc, T.; Seibl, J.; Simon, W. Tabellen zur Strukturaufklärung Organischer Verbindungen mit Spektroscopischen Methoden; Springer: Berlin, 1976.

